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Summary

A tﬁeory of inhomogeneous multicomponent polymer systems devel-
oped earlier by the authors is used to study the phase diagrams of
a mixture of block copolymers, homopolymers and solvents. We as-
sume that the deviation of the local volume fraction of any com-
ponent from its average value is small, and we expand the free
energy of the system up to fourth order in the fluctuations. This
approach enables us to determine the spinodal boundaries and to
estimate the location of the binodals. Some new features of the
resulting pelymeric phase diagrams are the prediction of eutectic
points, similar to those observed in metallurgy, and the phenomenon

of homopolymer-induced mesophase formation.
Introduction

Blends of block copolymers and homopolymers often exhibit
microphase separation, and show a rich variety of different mor-
phologies (HASHIMOTOQ et al., 1974; EASTMONDand PHILLIPS, 1979;
RAMOS and COHEN, 1977; RIESS et al., 1971) which have been studied
for practical applications relating to emulsifying agents and high-
impact plastics as well as for scientific interest. Recently there
has been considerable theoretical activity in this area (MEIER,
1977; LEIBLER, 1980; NOOLANDI and HONG, 1982). While the phenom-
enon of microphase formation in a pure block copolymer system is
reasonably well understood (HELFAND and WASSERMAN, 1980; LEIBLER,
1980), the situation for blends is much less clear. In this paper
we give preliminary results on the calculation of phase separation

behavior expected for these systems compared to pure block copolymers.
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Theoretical Model

We study the reduced free energy per unit volume f==F/ooVkBT
of a mixture of small molecules, homopolymers and block copolymers.
F is the total free energy of the system, V the total volume, p,

a reference number density, kB Boltzmann's constant and T the
absolute temperature. As shown in our earlier papers (HONG and
NOOLANDI, 1981; NOOLANDI and HONG, 1982), the free energy of the
inhomogeneous mixture may be written (relative to the Flory-
Huggins free energy of the homogeneous state)
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where wK(x) =¢K(x) -¢K is the deviation of the local volume frac-
tion from its average value. The subscripts k,A label the various
components of the system, and mK(§) is the self-consistent mean
field potential acting on component k. The quantity Q% is defined
in terms of the distribution function Q for the polymer or small
molecule, which in turn is given by the solution of a diffusion
equation involving the effective field wK(g). The "¢" over the
summation sign indicates that a copolymer is treated as a single
component, and T = pOZK/poK, where ZK is the degree of polymeriza-
tion. The Flory-Huggins parameter, Xea? is simply the spatial

integral of the corresponding non-local parameter, XKA(E..X)'

Qur approach to determining the phase diagram of a multicompo-
nent system involves assuming that the magnitude of the fluctua-
tions is small, i.e. [wK(g)/¢K\<<L and expanding in powers of wK.
This approach is strictly valid only near the spinodal line, and
away from this region the accuracy of the calculation decreases.
However, we expect that most of the qualitative features of the

phase diagrams remain unchanged.
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The mathematical details are considerably simplified by working with

the Fourier transforms of the important quantities,

) =fd3x ¥ e TEX
€

iex -k Xy

q, Gotlk,) = fc13xc13xo Q (x.tlx)e

The diffusion equation for QK can then be expanded in a straightforward way
as a power series in wK(k). This in turn enables us to expand the
logarithm in Eq. (1), and finally the entire expression for Af can be
written as a series expansion in &K. We retain all terms up to fourth
order in this expansion, and minimizing Af with respect tou%:allows us to
express wK in terms of &K, and consequently to write Af as an expansion up
to fourth order in wK. Minimization of the Af functional with respect to
wK then gives the equilibrium concentration profiles of the various

components.

Here we do not present the algebraic details of the calculation
(HONG and NOOLANDI, to be published). In order to study the phase separa-
tion behaviour of a mixture of a diblock copolymer AB and another component S
(either a homopolymer or a small molecule) we have assumed a lamellar
structure (with €A= A/(rA+-rB)= fB = 0.5) with the composition fluctuations
dominated by one wave vector k*. For a symmetric solvent (XAS:=XBS)’ the

end result for Af is particularly simple,
£ 27 10.5 z
6f = -0.27X,p [¢C - 10. /(rchB)] (3)

where $e is the volume fraction of block copolymer, and T ST+ Tp. Since
Af must be negative for an equilibrium non-homogeneous structure, we find
immediately the requirement rchB¢C210.5 for this to occur, in agreement
with LEIBLER (1980) for ¢c= 1.0. The periodicity of the microdomain
structure is found to be D=1.32 (Zc)%b, where b is the average Kuhn length
for the block copolymer, and is independent of the solvent concentration

in this calculation. This result gives an indication of the limitations of
the present work, since our earlier detailed numerical calculations (which
did not rely on a power series expansion in &KOI'@K) showed a decrease in
the periodicity with increasing solvent concentration (NOOLANDI and HONG,
1980) a result which has recently been verified experimentally by HASHIMOTO
et al., (1982).



Phase Diagrams

Taking into account the Flory-Huggins free energy in the homogeneous
"reference" state, and using the above result for Af, we may study the
phase separation diagram for the system. Fig. 1 shows such a diagram for
a poor, nonselective solvent. The solid lines are the boundaries of dif-
ferent regions indicated by HM (homogeneous-mesophase), M (mesophase),

H (homogeneous), and HH (homogeneous-homogeneous). Depending on the
governing parameters, the system may form a single mesophase, a single
homogeneous phase, or may phase separate into a homogeneous solvent-rich
phase and a mesophase, or a solvent phase and a homogeneous polymer solution.
The temperature at which XABZc corresponds tc the point E (17.9 in Fig. 1)
may be thought of as a eutectic temperature for the polymeric alloy system,
in the sense that it is the lowest temperature for which the homogeneous

solution, besides the almost pure solvent, can exist. At this temperature
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Eig. 1: Phase diagram of a diblock copolymer-solvent mixture. The volume
fraction of copolymer is ¢, and Z; is the degree of polymeriza-
tion. Zg=1 for the solvent, and fa, fp denote the volume
fractions of monomer A,B in the copolymer. The different regions
are discussed in the text.
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we can have three phases in equilibrium, the almost pure solvent, the homo-
geneous polymer solution at ¢c==0.59, and the mesophase at ¢c:=0.59. In

this case the latter two phases are indistinguishable, but in general this is
not so. The continuation of the HM spinodal line beyond the point E is shown
for illustration by the dashed line. The dot-dashed curve shows the spino-
dal for the HH region determined from Flory-Huggins theory, and the left and

right boundaries of HH are the corresponding binodals.

Fig. 2 shows the phase diagram for a mixture of a block copolymer and a
homopolymer corresponding to one of the blocks. Since the interaction para-
meters are now asymmetric (XAS¢XBS), a simple result such as given by Eq.(3)
is not found, and the analysis is more involved. As in the previous figure,
the dashed and dot-dashed lines indicate the spinodals, and the solid lines
represent the binodals. The most interesting feature of this diagram is the
prediction that a small amount of homopolymer added to the block copolymer

system will induce mesophase formation. Normally the critical value of
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Fig. 2: Phase diagram of a diblock copolymer-homopolymer mixture. The

volume fraction of copolymer is ¢c, and Z., Zg are the degrees of
polymerization of the block copolymer and homopolymer, respectively.
The homopolymer in this case corresponds to the A block of the
copolymer.



XABZc for mesophase formation in a pure block copolymer system is 10.5
(LEIBLER, 1980). With about 25% weight fraction of the corresponding homo-
polymer in the mixture, the critical value of XABZc is predicted to drop to
about 9.7. A more detailed account of these phase diagrams and other new

results will be published elsewhere.

Acknowledgements

J. Noolandi wishes to thank Prof. C. Wippler and the staff at the
Centre de Recherches sur les Macromolecules, Strasbourg, France, for their
kind hospitality during the summer of 1981. He also thanks Prof. H. Benoit
and Dr. L. Leibler for helpful discussions during the initial stages of
this work.

References

EASTMOND, G, C. and PHILLIPS, D.G.: Polymer 20, 1501 (1979)

HASHIMOTO, T., NAGATOSKI, K., TODO, A., HASEGAWA, H. and KAWAI, H.:
Macromolecules 7, 364 (1974)

HASHIMOTO, T., SHIBAYAMA, M., KAWAI, H.: A.C.S. Polymer Preprints 23, 21
(1982)

HELFAND, E., and WASSERMAN, Z, R.: Macromolecules 13, 994 (1980)

HONG, K. M. and NOOLANDI, J.: Macromolecules 14, 727 (1981)

HONG, K. M. and NOOLANDI, J.: to be published

LEIBLER, L.: Macromolecules 13, 1602 (1980)

MEIER, D. J.: A.C.S. Polymer Preprints 18, 340 (1977)

NOOLANDI, J. and HONG, K. M.: Ferroelectrics 30, 117 (1980)

NOOLANDI, J. and HONG, K. M,: Macromolecules EE; 482 (1982)

RAMOS, A. R. and COHEN, R, E.: Polym. Eng. Sci. 17, 639 (1977)

RIESS, G., PERIARD, J., BANDERET, A.: Colloidal and Morphological Behavior
of Block and Graft Copolymers, MOLAU, G. E., Ed., p.173, New York, Plenum
Press 1971

Received June 15, accepted June 22, 1982



